|
Благодаря своим уникальным физическим свойствам, углеродные нанотрубки (пустотелые «цилиндры» со стенками из атомов углерода) в перспективе могут иметь множество применений в разнообразных технологиях. Например, волокна и тросы из углеродных нанотрубок, согласно теоретическим расчетам, имеют механическую прочность на два порядка больше, чем такие же стальные конструкции. И что немаловажно, обладая такой большой прочностью, они имеют плотность на порядок меньше, чем у той же стали. Что касается замечательных электрических свойств углеродных нанотрубок, то их можно использовать (и кое-где это уже пытаются делать) в электромеханических системах нового типа в качестве нанодиодов, транзисторов, микроэлектрических двигателей и соединительных наноэлектропроводов.
Однако промышленное применение нанотрубок пока что ограничено из-за ряда технологических проблем. Прежде всего, еще не научились дешево и в больших количествах выращивать углеродные нанотрубки. Во-вторых, сейчас не умеют получать сколь угодно длинные нанотрубки, которые при этом имели бы однородные (то есть одинаковые вдоль всей длины) физические свойства — например, без структурных дефектов. Наконец, в процессе роста нанотрубок сложно контролировать такую их характеристику, как хиральность (степень «закрученности» нанотрубки в цилиндр). А это очень важно, поскольку в зависимости от хиральности нанотрубка имеет либо металлическую, либо полупроводниковую проводимость, а значит, для создания различных электронных приборов надо знать тип электропроводности выращенных нанотрубок.
Эти проблемы ученые с переменным успехом пытаются решить модернизацией имеющихся методик и техник роста нанотрубок. И вот недавно группе китайских ученых удалось добиться наибольшего прогресса в получении углеродных нанотрубок с момента открытия их открытия в 1991 году. В своей статье Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates (полный текст — PDF, 220 Кб), опубликованной в журнале Nano Letters, исследователи сообщили о контролируемом синтезе одностенных углеродных нанотрубок с рекордной на данный момент длиной — 18,5 сантиметров; скорость роста при этом составляла более чем 40 мкм/с. До этого максимальной длиной обладала четырехсантиметровая одностенная углеродная нанотрубка, выращенная в 2004 году американскими учеными из Лос-Аламосской национальной лаборатории, а скорость роста составляла 11 мкм/с (см. Zheng et al., 2004. Ultralong single-wall carbon nanotubes // Nature Materials. V. 3. P. 673–676.)
Кроме того, и это тоже важный результат, электрические свойства 18,5-сантиметровых нанотрубок оказались неизменными вдоль всей их длины. Такие достижения стали возможны благодаря используемой учеными технологии CVD (chemical vapor deposition) — химического осаждения из газовой фазы. И хотя технология CVD широко известна в мире как один методов получения углеродных нанотрубок (и не только нанотрубок), китайские исследователи первыми придумали, как ее усовершенствовать и улучшить, чтобы добиться от нее максимальной эффективности. Рецепт получения сверхдлинных одностенных нанотрубок, однородных по своим электрическим свойствам, выглядит так.
Процесс роста происходил при температуре 950°C в атмосфере этанола и водяного пара. В качестве катализаторов роста использовались наночастицы железа и молибдена, которые пропускались через пленку «затравочных» длинных нанотрубок шириной 3 мм (рис. 1). Эта пленка, которую авторы статьи назвали несущей конструкцией для будущего получения сверхдлинных углеродных нанотрубок, находилась на подложке из чистого кремния. Чтобы усилить процесс роста, в течение часа через атмосферу этанола и водяного пара пропускался также водород, скорость потока которого составляла 250 см3 в минуту.
Роль воды заключалась в стимуляции и контроле каталитической активности, а также в предотвращении появления нежелательного для данного процесса «мусора» в виде аморфного углерода и вертикально ориентированных нанотрубок. Более того, авторы статьи обнаружили, что наиболее эффективно процесс выращивания происходит, когда этанол и вода смешаны между собой в пропорции 4 : 1 (под эффективностью имеется в виду чистота полученных нанотрубок и их длина). Подложка из чистого кремния также играла здесь важную роль. Во-первых, ее задачей было не допустить на начальном этапе роста сверхдлинных нанотрубок появления всё того же углеродного «мусора». Во-вторых, использование кремниевой подложки, по утверждению авторов статьи, помогало получить нанотрубки намного большей конечной длины. Ученые также обнаружили, что без участия несущей конструкции (пленки из длинных нанотрубок) углеродные цилиндры дорастали всего лишь до нескольких сантиметров.
Эти нововведения — несущая конструкция из длинных углеродных нанотрубок на подложке из чистого кремния, а также правильно подобранная пропорция этанола и воды — и позволили получить нанотрубки длиной около 18,5 сантиметров. Еще одним техническим достижением китайских ученых, на котором они акцентируют внимание в своей работе, было то, что им удалось добиться чрезвычайно равномерного распределения температуры в печке, где и происходил весь описанный выше процесс. Без этого выращенные нанотрубки имели бы неоднородные физические свойства.
Чтобы проверить, однородны ли электрические характеристики полученных сверхдлинных нанотрубок, китайские ученые взяли одну из нанотрубок и на ее основе изготовили свыше 100 полевых транзисторов (рис. 2).
|
Параметры транзисторов оказались полностью тождественными друг другу. Из этого исследователи сделали вывод, что электрические свойства таких углеродных нанотрубок не изменяются по их длине.
К сожалению, в работе китайских ученых не сообщается о том, насколько выращенные ими сверхдлинные нанотрубки структурно однородны и можно ли их использовать для создания очень прочных нитей и тросов? Вопрос чрезвычайно актуален хотя бы для проекта космического лифта — гигантского подъемника грузов на околоземную орбиту, где в качестве троса учеными рассматриваются бездефектные и очень длинные углеродные нанотрубки.