|
Жизнь зарождалась в соленой морской воде, и первым клеткам — крохотным мешочкам с пресным содержимым — приходилось постоянно «выплевывать» проникающие в них ионы натрия, чтобы не «засолиться». Поэтому в мембране клеток появился специальный белок — натрий-калиевый насос. Этот трансмембранный (то есть пронизывающий мембрану насквозь) белок занимается тем, что выкачивает из клетки ионы натрия и взамен впускает ионы калия: на каждые три «выплюнутых» натриевых иона приходится два «проглоченных» калиевых и расщепляется одна молекула АТФ. Клетка научилась использовать возникающие в результате этого химические и электрические градиенты себе на благо: например, для создания потенциала покоя, симпорта и поддержания клеточного объема.
Тот факт, что в обмен на три иона натрия в клетку попадает только два иона калия, немного настораживает. Если в насосе есть три участка для связывания катионов, то куда же девается один из них, когда белок транспортирует калий? Группа ученых из Дании (датчане вообще славятся работами в биологии ионных насосов, взять хотя бы первооткрывателя натриевого насоса Йенса Кристиана Скоу) попыталась доказать, что место третьего натриевого иона во время переноса калия занимает цитоплазматический протон (то есть ион водорода), который потом, когда становится ненужным, возвращается назад в цитоплазму. Кроме того, исследователи предполагают, что обнаружили в натриевом насосе прежде неисследованный ионный ход, по которому и движется этот протон.
Всё началось с того, что при изучении альфа-субъединицы этого белка ученые обратили внимание на то, что между его C-концом и предполагаемым сайтом связывания для третьего иона натрия находится полость, выстланная полярными и заряженными аминокислотными остатками — то есть идеальная дорога для ионов. Особенно интересно, что тяжелое наследственное заболевание — гемиплегическая мигрень — вызывается мутацией в аминокислотах, находящихся совсем рядом с этой полостью.
Чтобы узнать, для чего эта полость нужна, ученые попробовали «испортить» ее (заменив некоторые из образующих ее аминокислот на другие) и посмотреть, какие проблемы возникнут у мутантного белка. Во-первых, выяснилось, что мутантный насос значительно утратил сродство к натрию. Но кроме того оказалось, что в определенных условиях (при повышенном мембранном потенциале) она «выплевывала» натрий гораздо охотнее, чем немутантный белок. Это могло означать, что мутация в данном участке насоса облегчает какой-то процесс, связанный с высвобождением натрия.
Исследователи провели еще ряд экспериментов и пришли к выводу, что этот загадочный процесс — высвобождение C-конца: он, как пробка, отходит от основной части белка, открывает ионный канал и впускает туда молекулы воды, которые протонируют находящийся в глубине остаток аспартата (D930). После этого натрий покидает насос и попадает во внеклеточное пространство. Всё это позволило ученым создать усовершенствованную модель работы натриевого насоса.
|
Судя по всему, он работает так. Пусть вначале в насосе «сидят» три иона натрия на своих сайтах связывания и один протон на глутаматном остатке. Ионы натрия могут выйти во внеклеточное пространство только тогда, когда C-конец белка поменяет свое положение и перестанет затыкать ионный канал и по этому каналу пойдет вода, которая протонирует остаток аспартата (где находится сайт связывания для натрия). Когда ионы натрия выходят во внеклеточное пространство, им на смену приходят ионы калия. Тот протон, который был на глутамате, переходит на аспартат, а тот, что был на аспартате, покидает белок по открытому ионному каналу. Ионы калия входят во внутриклеточное пространство по одному каналу, а протон, который был на аспартате, — по другому. На смену ионам калия приходят ионы натрия. На глутаматный остаток «садится» протон, и цикл повторяется.
Авторы полагают, что сходный механизм задействован и в работе протонного насоса, который очень похож на натриевый по своему строению.