Американские ученые предложили оригинальную методику реконструкции климата Земли в древнейшие эпохи. Они просчитали наиболее вероятное строение одного из классов белков у предковых форм бактерий и синтезировали эти белки в лаборатории. Оказалось, что воскрешенные белки древних времен имеют довольно высокую температуру плавления. Известно, что температура плавления данного класса белков хорошо согласуется с оптимальной температурой роста бактерий. Таким образом, синтезированные белки показали температуру, к которой были приспособлены древние бактерии, — около 60°С. Такой она, по-видимому, была 3,5 млрд лет назад и постепенно снижалась в течение последующих 3 млрд лет.
|
Те далекие эпохи не оставили нам практически никаких свидетельств, потому ученым приходится пользоваться косвенными уликами, моделями и логически непротиворечивыми реконструкциями. Как правило, о климате таких отдаленных эпох судят по изотопному составу углерода, кислорода, кремния, серы и других элементов. Эти данные всегда допускают неоднозначное толкование. Иногда предположения о протерозойских температурах базируются на присутствии тех или иных бактерий, но эти данные еще менее надежны и всегда вызывают массу возражений. Поэтому использование методов, эксплуатирующих любые другие блоки информации, не могут не вызывать интереса у желающих понять прошлое нашей планеты.
И вот американские специалисты предложили новый путь — восстановить белки древнейших бактерий и проверить, к каким температурам эти белки лучше всего приспособлены, благо современная молекулярная биология уже способна выполнить такие удивительные маневры, как конструирование белков. Тогда диапазон температур, в которых реконструированные белки будут устойчивы, как раз и покажет температурные условия, к которым были приспособлены бактерии.
В качестве температурных белков-индикаторов решено было восстановить особые ферменты, участвующие в последовательном присоединении аминокислот на матричную РНК (мРНК) во время синтеза белковой молекулы (то есть в основной стадии трансляции — элонгации). Эти белки-удлинители называются факторами элонгации (elongation factors). Они должны всегда присутствовать в клетке в большом количестве, пока клетка жива, и всегда должны быть наилучшим образом приспособлены к окружающей среде, иначе белки в клетке будут медленно синтезироваться. Авторы статьи остановили свой выбор на одном из трех факторов элонгации, присутствующих у прокариот, — EF-Tu (elongation factor thermo-unstable).
И вот, исходя из строения этих белков-удлинителей и, соответственно, кодирующих их генов у современных бактерий разных классов — архей, протеобактерий, цианобактерий, а также хлороплаcтов и митохондрий и т. д. — были реконструированы наиболее вероятные предковые гены ферментов-удлинителей. Предковые гены должны иметь наибольшее число общих участков последовательностей нуклеотидов, чтобы из этой общей последовательности затем можно было отпочковывать так или иначе измененные участки генов. Это стандартная статистическая задача сейчас легко решается: банки данных с расшифрованными генными последовательностями, в том числе и белков-удлинителей, находятся в открытом доступе. Для реконструкций были взяты две альтернативные схемы эволюции бактерий, так что генные последовательности предковых белков получились немного разные. Затем эти гипотетические белки получили в лаборатории: собрали кодирующие их гены, внедрили их в клетки Escherichia coli, и бактерия вынужденно синтезировала необходимые ученым белки. После чего ученые уже могли спокойно изучать термостойкость этих воскрешенных белков.
Выяснилось, что чем раньше разошлись эволюционные ветви бактерий, то есть чем раньше жил общий предок бактерий, тем более термостойкий был предковый белок-удлинитель. И напротив, наиболее поздно разошедшиеся бактерии имели общего предка, у которых белки были приспособлены к относительно низким температурам. То есть белки-удлинители дают общий тренд снижения температур, к которым были приспособлены древние бактерии, — примерно от 70–62°С в раннеархейские времена (3,5 млрд лет назад) до 37–35°С в докембрийскую эпоху (550 млн лет назад).
Это означает, что на заре земной жизни бактерии жили примерно в таких же условиях, какие сейчас существуют в горячих источниках, если к этому прибавить ультрафиолет и отнять кислород. Использование альтернативных схем бактериальной эволюции, хоть и дает несколько различные предковые белки, но мало отражается на температурных свойствах этих предковых белков, а значит, почти не меняет конечный результат восстановления температуры поверхности Земли. Так, по восстановленным белкам получилось, что цианобактерии возникли в температурных условиях около 63°С, а современные цианобактериальные маты в горячих источниках приспособлены к температурам около 65°С.
|
Естественно, важно и то, что полученный температурный тренд совпал с теми расчетами, которые дают реконструкции температур по изотопам кислорода и кремния. Совпадение результатов, полученных различными методами и на основе различных данных, всегда обнадеживает специалистов — это, пожалуй, единственный критерий правдоподобия реконструкций. Других способов доказать реалистичность наших представлений о давно исчезнувшем прошлом пока нет. Теперь осталось придумать, как же при таких высоких температурах происходили великие оледенения. Оледенения хорошо согласуются с существованием умеренных температур на протяжении всей земной истории и служат важным аргументом для сторонников «умеренной» температурной концепции. Ясно, что представленные в публикации в Nature результаты повлекут за собой новый виток дискуссии об условиях становления жизни на Земле.