|
Вероятность переноса генов из митохондрий в ядро выше у растений, размножающихся вегетативно и путем самоопыления, хотя именно таким растениям этот перенос сулит меньше всего выгод. Это говорит о том, что половое размножение затрудняет крупные геномные перестройки. Оно ведет к постоянному перекомбинированию генов, а это мешает им поддерживать достаточный уровень «взаимной приспособленности» в процессе крупномасштабных изменений. Данное открытие хорошо согласуется с идеями В. П. Щербакова о половом размножении как факторе, повышающем стабильность видов и замедляющем их эволюцию.
Митохондрии — органеллы, обеспечивающие энергией клетки всех животных и растений — как известно, являются потомками симбиотических бактерий. От своих далеких предков митохондрии унаследовали маленькую кольцевую хромосому, содержащую, правда, гораздо меньше генов, чем у любой бактерии. Геном митохондрии кодирует лишь малую часть белков, необходимых для жизни, нормального функционирования и размножения самой митохондрии (они размножаются делением, как бактерии, и не могут образовываться de novo). Все недостающие белки поступают в митохондрию извне, то есть из цитоплазмы клетки, а кодирующие их гены находятся в клеточном ядре.На сегодняшний день твердо установлено, что практически все эти митохондриальные гены ядерной локализации когда-то располагались в митохондриальной хромосоме, а затем были перенесены в ядро. Быстрее всего процесс переноса шел на ранних этапах становления эукариотической клетки, то есть вскоре после того, как предки эукариот приобрели своих замечательных симбионтов (по разным оценкам, 1,5–3,0 млрд лет назад). У животных этот процесс зашел дальше, чем у растений. Митохондриальная хромосома человека, например, кодирует всего 13 белков и имеет размер около 16,5 тысяч пар оснований. В ней остались только те гены, которые невозможно перенести по техническим причинам: строение кодируемых ими белков не позволяет транспортировать их через оболочку митохондрий. У растений митохондриальные геномы примерно в 10-20 раз больше, и эпизодический перенос отдельных митохондриальных генов в ядро продолжается по сей день.
Остается открытым вопрос о том, зачем (или почему) митохондриальные гены переносятся в ядро. В долгосрочной перспективе ядерная локализация этих генов дает очевидные преимущества. К ядерным генам гораздо легче «пристроить» эффективные системы регуляции, которые позволяют увеличивать или уменьшать активность гена в зависимости от потребностей клетки. Ядерные хромосомы, в отличие от митохондриальной, у большинства организмов присутствуют в двух копиях (одна от отца, другая от матери). В процессе образования половых клеток парные хромосомы обмениваются между собой участками. В результате этого обмена (рекомбинации), а также вследствие слияния половых клеток (оплодотворения) в каждом поколении образуются новые сочетания генетических вариантов (аллелей). Всё это в конечном счете повышает полиморфизм популяции, ее устойчивость и приспособляемость к меняющимся условиям, создает более благоприятные условия для распространения полезных мутаций и снижает вероятность генетического вырождения вследствие необратимого накопления мутаций вредных. Митохондриальная хромосома не рекомбинирует, размножается исключительно бесполым путем («клонируется») и передается только по материнской линии. Поэтому все потомки одной женской особи имеют одинаковые митохондриальные геномы, идентичные материнскому. Очевидно, это не очень «здоровый» способ передачи наследственной информации, практически исключающий возможность прогрессивной эволюции генов, оставшихся в митохондриях, при том что скорость накопления мутаций в митохондриальной хромосоме намного выше, чем в ядерных.
Может быть, митохондриальные гены переселились в ядерный геном как раз для того, чтобы на них распространились все те преимущества, которые дает рекомбинация и половое размножение? Примерно так и рассуждают многие исследователи. Правда, в этом объяснении есть уязвимое место: преимущества, о которых идет речь, могут проявиться лишь в отдаленной эволюционной перспективе, тогда как конкретные генетические перестройки и поддерживающий их естественный отбор должны были иметь место «здесь и сейчас». Перенос гена из митохондрии в ядро едва ли может обеспечить организму или популяции мгновенную выгоду.
Более того, этот перенос должен идти поэтапно, проходя целый ряд промежуточных стадий. Сначала копия митохондриального гена должна встроиться в одну из ядерных хромосом. Затем к ней должна в результате случайных перестановок участков ДНК пристроиться подходящая регуляторная область (чтобы ген заработал), а также особый фрагмент, который будет сигнализировать клетке, что белок — продукт данного гена — следует транспортировать в митохондрию. Все митохондриальные гены ядерной локализации имеют такой сигнальный фрагмент. Только после этого исходный ген, локализованный в митохондриальной хромосоме, может быть отключен или удален.
На всех этих промежуточных стадиях любые перетасовки генетического материала, происходящие в результате рекомбинации и полового размножения, могут только помешать делу. Например, представьте себе популяцию организмов, размножающихся половым путем, в которой у одних особей митохондриальный ген в ядерной хромосоме уже «включился», а у других еще нет, у одних митохондриальная копия еще работает, у других — уже нет. Ничего хорошего от скрещивания особей с разными состояниями этих признаков явно не получится, поскольку жизнеспособными будут не все, а только некоторые из возможных сочетаний ядерных и митохондриальных геномов. С гораздо большей вероятностью подобные генетические изменения возникнут и зафиксируются у организмов, размножающихся вегетативным путем или практикующих самооплодотворение. И это не смотря на то, что таким организмам перенос митохондриальных генов в ядро, казалось бы, вовсе не нужен, поскольку он не даст им тех долгосрочных преимуществ, о которых шла речь выше.
Какой же фактор был важнее для переноса митохондриальных генов в ядро — долгосрочная выгода или сиюминутная возможность? Кстати, вопрос можно поставить и шире, ведь о многих эволюционных преобразованиях не так-то просто сказать, возникли они «зачем-то» или просто «почему-то».
Биологи из Индианского университета (Indiana University) в Блумингтоне (США) решили проверить эти гипотезы на растениях, у которых, как уже говорилось, перенос митохондриальных генов в ядро не закончился давным-давно, как у животных, а продолжается и по сей день. Если верна первая гипотеза, то есть гены переносятся ради долгосрочной выгоды, то у растений, практикующих перекрестное опыление, митохондриальные гены должны переноситься в ядро чаще, чем у самоопыляющихся или размножающихся вегетативно. Если же гены переносились не ради выгоды, а случайно, то это должно было происходить чаще у тех видов, которым это проще осуществить, то есть у самоопыляющихся или размножающихся бесполым путем.
Ученые проанализировали геномы 170 родов покрытосеменных растений, время возникновения которых и положение на эволюционном древе более или менее твердо установлены. Для каждого рода было определено количество независимых событий переноса митохондриальных генов в ядро. Оказалось, что количество таких событий значительно выше в тех эволюционных линиях, где преобладает вегетативное размножение и самоопыление. Таким образом, подтвердилась вторая гипотеза: гены чаще переносятся не у тех видов, кому это выгодно, а у тех, кому это легче осуществить.
Кроме того, оказалось, что корреляция между числом переносов и способом размножения лучше выражена для тех эволюционных событий (переносов), которые произошли сравнительно недавно, чем для более древних. Одна из возможных интерпретаций этого обстоятельства состоит в том, что отказ от нормального полового размножения — это своего рода эволюционный тупик, и растения, пошедшие по этому пути, либо довольно быстро вымирают, либо возвращаются к перекрестному опылению.
Авторы предполагают, что тем же закономерностям должен подчиняться и перенос генов из пластид в ядро (пластиды, органеллы фотосинтеза, тоже являются потомками симбиотических бактерий), и перемещения генов с одной хромосомы на другую в пределах ядерного генома. Если эти предположения подтвердятся, это будет означать, что половое размножение является мощным фактором, препятствующим крупномасштабным геномным перестройкам у эукариотических организмов. Данная идея удивительно хорошо согласуется с рассуждениями В. П. Щербакова, полагающего, что половое размножение помогает организмам противостоять эволюционным изменениям (см.: В. П. Щербаков. Эволюция как сопротивление энтропии).