|
Аргументы против существования сверхпроводимости 1,5-го рода
Как уже было сказано, количественный критерий деления сверхпроводников на 1-й и 2-й род проистекает из знака поверхностной энергии границы раздела «сверхпроводник — нормальный металл». Очевидно, что здесь возможны только два случая (вариант с нулем исключается): либо поверхностная энергия положительная, либо отрицательная. Поэтому этот критерий не изменится даже для двухщелевого сверхпроводника. Именно такой довод приводится в статье Interface energy of two band superconductors, опубликованной в журнале Physical Review B. Авторы работы, коллектив ученых из США и ЮАР, фактически проделали те же расчеты, что и Абрикосов, но для сверхпроводника с двумя сортами куперовских пар. Они показали, что в случае, когда для первого сорта куперовских пар параметр Гинзбурга–Ландау меньше 1/v2, а для второго он больше 1/v2, поверхностная энергия принимает положительное значение, а потому имеет место сверхпроводимость 1-го рода.
Более того, те же ученые в другой своей статье доказывают, что различие между двумя разновидностями куперовских пар в температурном диапазоне в окрестности Tc, то есть там, где применяется теория Гинзбурга–Ландау, исчезает, и двухщелевой сверхпроводник превращается в сверхпроводник с одной щелью.
Чего ожидать дальше?
Все описанные здесь работы носят исключительно теоретический характер и основываются на численном анализе теории Гинзбурга–Ландау. Поставить точку в этом споре могут лишь очень аккуратные эксперименты по наблюдению вихревой решетки в двухщелевых сверхпроводниках. Благо сейчас стало известно, что не только диборид магния обладает двумя сортами куперовских пар, но и недавно открытые железосодержащие сверхпроводники (см. Открыт новый тип высокотемпературных сверхпроводников, «Элементы», 12.05.2008 и Найдено новое семейство сверхпроводников, содержащих железо, «Элементы», 31.10.2008), высококачественные монокристаллы которых синтезировать немного проще. Так что теперь с большой вероятностью следует ждать возврата дискуссии в экспериментальную плоскость.